www.ijreat.org

Simultaneous Treatment Of Lyophilized Cell-Adsorbed Bacteriocin Of Lactobacillus Curvatus CWBI-B28 With An Organic Acid Or Salt To Control Listeria Monocytogenes On Raw Chicken Ham

Privat KOUAKOU^{1,2}, Godi Henri Marius BIEGO¹, Chatigre Olivier KOUAME¹

¹Laboratoire de Biochimie et Sciences des Aliments (LaBSA), 22 BP : 582 Abidjan 22 ²Faculte' Universitaire des Sciences Agronomiques de Gembloux, Bio-industrie, Passage des Déportés, B-5030 Gembloux, Belgium

Running head

Enhancing the antilisterial action of bacteriocin with organic acids/salts

Abstract

The main aim of this study was to see if the antilisterial action of lyophilized cell-adsorbed bacteriocin from *Lactobacillus curvatus* CWBI-B28 might be reinforced by simultaneous treatment with an organic acid or salt. Slices of chicken ham (raw chicken ham) inoculated with *Listeria monocytogenes* (at 10² cfu/g ham) were either vacuum packaged directly and stored at 4°C or treated prior to packaging with a solution containing either lyophilized cell-adsorbed bacteriocin from *Lactobacillus curvatus* CWBI-B28 (at 1 g/100 mL), an organic acid or salt, or both. The organic acids/salts used were acetic acid, lactic acid, sodium acetate, sodium diacetate, potassium sorbate, and potassium benzoate and the concentrations of the corresponding solutions were calculated so as to treat each slice with approximately 0.1, 0.3, or 0.5 mg acid/salt. Of the antimicrobials used alone, LCaB had the strongest inhibitory effect (a 1-Log reduction in the Listeria cfu count after two weeks, followed by an increase). In combination with LCaB, three antimicrobials had a much more drastic effect: acetic acid, sodium diacetate, and potassium benzoate. At the highest acid/salt concentration tested in such combinations, *Listeria* became undetectable after one or two weeks and remained so until the end of the 6-week experiment.

Author Keywords: Listeria monocytogenes; bacteriocin; Organic acids; chicken ham; antimicrobials

www.ijreat.org

1. Introduction

Listeria monocytogenes is a gram-positive, foodborne pathogen. It is widely distributed in the

environment and occurs naturally in many raw foods. Products that do not receive a heat treatment

by the consumer, including ready-to-eat (RTE) products such as cheeses, meat, and fish

delicatessen products, may contain high levels of L. monocytogenes when eaten, and many of these

types of foods have been associated with listeriosis (McLauchlin 1997). Raw chicken ham is often

been linked to sporadic cases of listeriosis and such products is an RTE product which is the most

widely marketed species in most parts of the world, and for that reason will be the focus of the

current document.

As the HACCP programs applied in the raw ham industry often appear insufficient to prevent the

presence or growth of L. monocytogenes in processed ham product, post-packaging hurdle

technologies are needed for its control [11]. The idea is to combine two or more hurdles, each of

which can only partially inhibit *Listeria* growth when used alone. One strategy involves treatment

with combinations of two or more antimicrobials. For example, the antimicrobial action of lactates

can be reinforced by combining them with *Origanum vulgare* L. essential oil [13], sorbic acid can

synergize with nisin [29], and organic acids and salts can potentiate the antimicrobial activity of

pediocin [18]. Like pediocin, the bacteriocin produced by *Lactobacillus curvatus* CWBI-B28 is a

class IIa bacteriocin (more precisely, it is a sakacin P - Dortu et al. [8]).

In a model meat system (slices of lean bacon inoculated with *Listeria monocytogenes*, vacuum

packaged, and monitored over a 6-week period of storage at 4°C), research in our laboratory has

shown that co-inoculated Lactobacillus curvatus CWBI-B28 can delay but not prevent listerial

growth [15,16,17]. In the present work we have focused on another food matrix system (raw

www.ijreat.org

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 4, Issue 6, Dec - Jan, 2017

ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

chicken ham) much less complex than meat. Our aim was to evaluate the antilisterial action of

lyophilized cell-adsorbed Lactobacillus curvatus CWBI-B28 bacteriocin (LCaB) spread over the

ham as an aqueous solution, and to see if certain organic acids or salts might act in synergy with

it.

2. Materials and methods

2.1. Reagents and preparation of antimicrobial solutions

DL-lactic acid (85% w/w syrup), potassium benzoate, potassium sorbate, and sodium acetate were

purchased from Sigma-Aldrich (Diegem, Belgium), glacial 100% acetic acid from Mallinkrodt

(Dublin, Irlande), and sodium diacetate from Niacet (Niagra Falls, NY, USA). LCaB was prepared

in our laboratory as described in [16].

All solutions used to treat the ham were prepared in sterile distilled water. The 85% DL-lactic acid

syrup and 100% glacial acetic acid were diluted 1:100, 3:100, and 5:100 (v/v); potassium benzoate

and potassium sorbate were used at 3 g/100 mL; sodium acetate and sodium diacetate were used

at 1, 3, and 5 g/100 mL. LCaB was used at 1 g/100 mL. The activity of this solution, determined

in arbitrary units (AU) as detailed in [16] by means of the agar well diffusion assay described by

Parente and Hill [22], was 4267 AU/mL.

Two sets of solutions were prepared: one with each antimicrobial separately and one where each

salt or acid was combined with LCaB.

2.2. Ham inoculation and treatment with antimicrobials

www.ijreat.org

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

www.ijreat.org

The raw ham used in this work was pre-sliced ham (each slice weighed approximately 100 g and

its dimensions were 15x7x1 cm. At the time of purchase and after six weeks of refrigeration in the

lab, this ham was tested for the presence of *Listeria* and was found negative.

Slices were placed on aluminium foil under a biohazard hood and inoculated on each side with 50

μL Listeria monocytogenes suspension (at 2.10⁵ cfu/ml, so as to inoculate approximately 10² cfu

per gram of ham). After an hour of adsorption, they were treated on each side with 1 ml

antimicrobial solution. First, the solution was deposited on one side of each slice and spread over

the surface with a sterile bent glass rod. The slice was left at 4°C for 10 min to allow attachment,

and then the same procedure was repeated on the other side. Then, the treated slices were vacuum

packaged and stored at 4°C for six weeks.

2.3. Ham sampling

The ham slices were sampled at regular intervals (1, 2, 3, 4, 5, 6 weeks) during incubation. At each

sampling, 20-g samples were taken aseptically from the slices, diluted with 10 mL sterile saline

solution (0.85% sodium chloride), and pressed manually in a Stomacher bag to extract as much

liquid as possible. This liquid (called the 'ham juice' hereafter) was then used for microbiological

(Listeria) analysis.

2.4. Microbiological analysis

Growth of the inoculated Listeria strains was determined on the basis of cfu counts after

homogenization of 1 mL meat juice in 9 mL peptone water, as described by Katla et al [14]. A ten-

fold dilution series was prepared and 1-mL aliquots were plated. L. monocytogenes was plated on

Palcam agar and colonies were counted after incubation for 48-72 h at 37°C.

www.ijreat.org

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 4, Issue 6, Dec - Jan, 2017

ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

2.5. Statistical analysis

Each trial was repeated twice and each determination was done in triplicate. Statistical analysis

(analysis of variance $\alpha = 0.05\%$ and Student's t-test) was done with Excel software.

3. Results

3.1. Behavior of L. monocytogenes in raw chicken ham treated or not with a single

antimicrobial

Fig. 1 shows the evolution, during storage at 4°C, of the L. monocytogenes cfu count in raw ham

treated with a single antimicrobial or left untreated (control). In the untreated samples, the mean

Listeria count increased from 10² to 10⁷ cfu/g over the six-week storage period. Samples treated

with LCaB alone showed a significant (P<0.05), approximately 90% decrease in the cfu count over

the first two weeks, but this was followed by a growth rebound, the count reaching 4.3 x 10⁵ cfu/g

by the end of the experiment. All the other antimicrobials proved somewhat inhibitory, the *Listeria*

cfu count increasing 10- to nearly 1000-fold over the first three weeks and stabilizing thereafter.

This small but significant negative effect (p<0.05 after the first week) made it interesting to see if

one or more of these agents might act synergistically with LCaB to control L. monocytogenes more

effectively than any of these agents used alone.

3.2. Behavior of L. monocytogenes in raw chicken ham treated or not with LCaB and either

lactic or acetic acid

Fig. 2 shows the evolution, during storage at 4°, of the L. monocytogenes cfu count in raw ham co-

treated with LCaB and either lactic or acetic acid. The organic acids were each tested at three

concentrations: 1.03, 3.08, and 5.14 g/100 mL for lactic acid (abbreviated respectively as La1g,

www.ijreat.org

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

www.ijreat.org

La3g, and La5g in Fig. 2) and 1.05, 3.15, and 5.25 g/100 mL for acetic acid (respectively aa1g,

aa3g, aa5g). All of the tests showed a significant (p<0.05) cfu count decrease at the end of week

2, but in most cases this was followed by a growth rebound. The most striking results were obtained

with LCaB plus acetic acid at 3.15 and 5.25 g/100 mL: Listeria was undetectable after two weeks

in the former case, and after only one week in the latter. With acetic acid at 3.15 g/100 mL, some

regrowth occurred after the fifth week, the *Listeria* count reaching 10 cfu/g by the end of the

experiment. This remains two to three Log units lower than with either LCaB or acetic acid used

alone.

3.3. Effect of LCaB combined with an organic salt on L. monocytogenes in raw ham

Fig. 3 shows the evolution, during storage at 4°C, of the L. monocytogenes cfu count in raw ham

co-treated with LCaB and either sodium acetate (at 3 or 5 g/100 mL), sodium diacetate (at 3 or 5

g/100 mL), potassium sorbate (at 3 g/100 mL), or potassium benzoate (at 3g/100 mL). The count

initially decreased whatever the treatment, but the effect was slight and brief in the case of sodium

acetate (both concentrations) and potassium sorbate (3 g/100 mL). A drastic effect was observed

with sodium diacetate: Listeria was undetectable after one week of treatment with the more

concentrated solution (5 g/100 mL) and after two weeks when the less concentrated solution was

used (3 g/100 mL). In the latter case, regrowth occurred after 5 weeks, the count reaching 5 cfu/g

by the end of the experiment. Potassium benzoate at 3 g/100 mL also reduced the *Listeria* count

to below the detection level by the end of week 2, and no growth rebound was observed.

Discussion

www.ijreat.org

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

www.ijreat.org

Transient inhibition of *Listeria monocytogenes* by *Lactobacillus curvatus* CWBI-B28 has been

observed previously in the meat system used before [16]. It is due mostly to the bacteriocin

produced by the strain, since a bacteriocin-negative derivative of this strain is unable to inhibit

Listeria growth [16, 17]. Class IIa bacteriocins are known to kill bacteria by forming pores in the

bacterial membrane, thus disrupting the proton-motive force and causing ATP depletion [21].

Here, instead of co-inoculating the ham with *Lactobacillus curvatus* CWBI-B28 cells, we have

used a preparation of lyophilized cell-adsorbed bacteriocin. Although an initial 10-fold inhibitory

effect was observed after two weeks of storage at 4°C, growth resumed thereafter (Fig. 1). Similar

results have been reported for L. monocytogenes exposed to broth containing the Class I

bacteriocin nisin [7]. The cause of this growth rebound is unclear. One cause may be bacteriocin

degradation over the storage period by bacterial or meat enzymes [10]. This hypothesis is

supported by the fact that when the plasmid responsible for bacteriocin production in *Lactobacillus*

curvatus CWBI-B28 was introduced into a less proteolytic strain, regrowth was significantly

delayed [15]. Another process that might contribute to regrowth is inactivation of the bacteriocin

by nonspecific adsorption to lipids in the meat (ham) sample, as observed with nisin [24]. Also

with nisin, investigators have found resistant mutants to appear over time [2, 6, 28].

When tested individually, all of the organic acids and salts investigated here, which are all

commonly used as food preservatives [27, 1], showed some ability to reduce the growth of *Listeria*

monocytogenes over the six-week storage period (Fig. 1). Their effect was quite small, however,

since at the end of the six-week storage period and in the best of cases (acetic acid at 5.25 g/100

mL), the listerial cfu count was only one Log unit lower than in the untreated control. According

www.ijreat.org

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

www.ijreat.org

to one mechanism proposed for the antimicrobial action of organic acids [19, 25], cell damage is

caused by passive penetration of the nondissociated form into the bacterial cell, followed by its

dissociation inside the cell. This should lower the internal pH, disrupt the proton-motive force, and

inhibit substrate transport [26]. In this perspective, assuming that the pH of the environment of the

Listeria cells is close to that of the applied treatment solution, one would expect the acids (acetic

acid, lactic acid, diacetate) to have a stronger antilisterial action than the salts. It should be

mentioned, however, that the latter can also affect cells by lowering the water activity [3], and that

some salts might exert more specific effects on cell metabolism. Furthermore, as lactic acid

dissociates more readily than acetic acid, is less lipophilic, and in the experiment of Fig. 1 was

used at lower molar concentration (0.57 versus 0.87 M), one would expect it to be less effective

than acetic acid. In actual fact, no significant difference was observed between the effects of the

tested agents.

Our main question was: can any of these acids/salts synergize strongly with LCaB? The answer is

yes. As shown in Figs. 2 and 3, acetic acid (at 3.15 and 5.25 g/100 mL), diacetate (at 3 and 5 g/100

mL), and potassium benzoate (at 3 g/100 mL) proved able to render Listeria undetectable for at

least three weeks. The similar effects of diacetate and acetic acid is not surprising, since diacetate

contains 40% acetic acid. The comparatively low antilisterial activity of sodium acetate suggests

that a low pH is essential to the observed effect. How do LCaB and organic acids influence each

other's action? The antimicrobial activity of bacteriocins such as nisin, sakacin P, and curvacin A

is known to be enhanced at low pH [12, 9]. In the case of pediocin, a low external pH has been

found to favor the first step in pore formation: binding of the antimicrobial agent to the bacterial

membrane [5]. Furthermore, as both LCaB and organic acids act to disrupt the proton-motive force,

www.ijreat.org

www.ijreat.org

they might reinforce each other's action at this level. The most surprising result is the strong

synergy of LCaB with potassium benzoate, which should somewhat raise rather than lower the pH

of the Listeria cell environment. Does benzoate interact directly with LCaB? Does LCaB facilitate

entry of benzoate into the Listeria cells? Does benzoate exert a specific action once inside the

cells? Answers to such questions must await further study.

In conclusion, treating *Listeria*-contaminated ham surfaces with a solution of acetic acid, diacetate,

or benzoate in combination with L. curvatus bacteriocin appears as a promising way to inhibit

listerial growth. The possibility that benzoate might exert a specific effect in the presence of LCaB

deserves further study. Work involving different meat systems, longer storage periods, and

optimization of additive concentrations is also needed to see just how effective this approach can

be.

References

1. Albarracín W, Sánchez IC, Grau R, Barat JM (2011) Salt in food processing; usage and

reduction: a review. Inter J Food Sci Technol 46(7): 1329-1336

2. Bechinger B, Salnikov ES (2012) The membrane interactions of antimicrobial peptides

revealed by solid-state NMR spectroscopy. Chemistry and physics of lipids 165(3): 282-301

3. Borges A, Ferreira C, Saavedra MJ, Simões M (2013) Antibacterial activity and mode of

action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug

Resistance, 19(4): 256-265.

4. Centers for Disease Control & Prevention (CDC) (2002) Public Health dispatch: Outbreak

of listeriosis—Northeastern United States, (2002) Morb Mor Week Rep 51: 950–951

www.ijreat.org

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

www.ijreat.org

- **5.** Chen Y, Ludescher RD, Montville TJ (1997) Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles. Appl Environ Microbiol 63(12): 4770-4777.
- **6.** Choi KY, Chow LN, Mookherjee N (2012) Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J Innate immunity 4(4): 361-370
- 7. Devi SM, Ramaswamy AM, Halami PM (2014) In situ production of pediocin PA-1 like bacteriocin by different genera of lactic acid bacteria in soymilk fermentation and evaluation of sensory properties of the fermented soy curd. J Food Sci Technol 51(11): 3325-3332
- **8.** Dortu C, Huch M, Holzapfel WH, Franz CMAP, Thonart P (2008) Anti-listeria activity of bacteriocin-producing Lactobacillus curvatus CWBI-B28 and *Lactobacillus sakei* CWBI-B1365 on raw beef and poultry meat. Lett Appl Microbiol 47: 581–586
- **9.** Gänzle MG, Weber S, Hammes WP (1999) Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. Inter J Food Microbiol 46(3): 207-217
- **10.** Guo Y, Yu Z, Xie J, Zhang R (2012) Identification of a new *Bacillus licheniformis* strain producing a bacteriocin-like substance. J Microbiol 50(3): 452-458
- **11.** Hereu A, Bover-Cid S, Garriga M, Aymerich T (2012) High hydrostatic pressure and biopreservation of dry-cured ham to meet the Food Safety Objectives for Listeria monocytogenes. Inter J Food Microbiol 154(3): 107-112
- **12.** Jaquette CB, Beuchat LR (1998) Combined effects of pH, nisin, and temperature on growth and survival of psychrotrophic *Bacillus cereus*. J Food Prot 61(5): 563-570
- **13.** Jefferson C. de Barros, Maria Lúcia da Conceição, Nelson Justino Gomes Neto, Ana Caroliny Vieira da Costa, and Evandro Leite de Souza (2012) Combination of Origanum vulgare L. essential oil and lactic acid to inhibit *Staphylococcus aureus* in meat broth and meat model. Braz J Microbiol 43(3): 1120–1127
- **14.** Katla T, Moretro T, Aasen IM, Holck A, Axelsson L, Naterstad K (2001) Inhibition of *Listeria monocytogenes* in cold smoked salmon by addition of sakacin P and/or live *Lactobacillus sakei* cultures. Food Microbiol 18: 431–439.
- **15.** Kouakou P, Dortu C, Dubois-Dauphin R, Vandenbol M, Thonart P (2010). Plasmid-associated bacteriocin production by *Lactobacillus* LMG21688 suppresses *Listeria monocytogenes* growth rebound in a food system. FEMS Microbial. Lett. 306(1): 37-44.

www.ijreat.org

- **16.** Kouakou P, Ghalfi H, Destin J, Dubois-Dauphin R, Evrard P, Thonart P (2008) Enhancing the antilisterial effect of *Lactobacillus curvatus* CWBI-B28 in pork meat and cocultures by limiting bacteriocin degradation. Meat Sci 80: 640–648.
- **17.** Kouakou P, Ghalfi H, Destin J, Dubois-Dauphin R, Evrard P, Thonart P (2009) Effects of curing sodium nitrite additive and natural meat fat on growth control of *Listeria monocytogenes* by the bacteriocin-producing *Lactobacillus curvatus* strain CWBI-B28. Food Microbiol 26: 623–628.
- **18.** Kumar B, Balgir PP, Kaur B (2012) Assessment of stability and biopreservative effect of recombinant pediocin CP2. Inter J Food Fermen Technol 2(2): 149 156
- **19.** Lacombe A, Wu VC, Tyler S, Edwards K (2010) Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against *Escherichia coli* O157: H7. Inter J Food Microbiol 139(1): 102-107
- 20. Lück E (1990) Food applications of sorbic acid and its salts. Food Addit Contam 71: 1-5
- **21.** Nes IF, Holo H (2000) Class II antimicrobial peptides from lactic acid bacteria. Peptide Sci 55(1): 50-61
- **22.** Parente E, Hill C (1992) A comparison of factors affecting the production of two bacteriocins from lactic acid bacteria. J Appl Bacteriol 73: 290–298.
- **23.** Rebuffat S (2011) Bacteriocins from Gram-Negative Bacteria: A Classification? *In Prokaryotic Antimicrobial Peptides* (pp. 55-72). Springer New York.
- 24. Reeves P (2012) The bacteriocins (Vol. 11) Springer Science & Business Media.
- **25.** Riemensperger AV, Bachinger D, Schaumberger S, Urbaityte R, Pasteiner S (2012) The effect of an organic acid blend, cinnamaldehyde and a permeabilising substance on the inhibition of bacterial growth in vitro and growth performance of weaning pigs. Vet Med Zoot 60(82): 59-66
- **26.** Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal 4(10): 1340-1351
- **27.** Taormina PJ (2010) Implications of salt and sodium reduction on microbial food safety. Cri Rev Food Sci Nutr 50(3): 209-227
- **28.** Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Progress in lipid research 51(2): 149-177

ISSN: 2320 – 8791 (Impact Factor: 2.317) www.ijreat.org

29. Zhou F, Ji B, Zhang H, Jiang H, Yang Z, Li J, Yan W (2007) Synergistic effect of thymol and carvacrol combined with chelators and organic acids against *Salmonella Typhimurium*. J Food Prot 70(7): 1704-1709

McLauchlin J. 1997. The pathogenicity of *Listeria monocytogenes*: a public health perspective. Rev Med Microbiol 8(1):1-14.

Figures

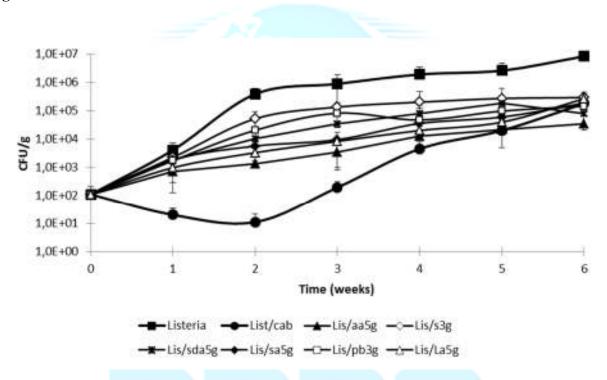


Fig. 1. Survival/growth of inoculated *Listeria monocytogenes* inoculated on untreated raw chicken ham slices (■) and on slices treated with 100 μL cell-adsorbed bacteriocin (cab) at 4267 AU/mL(•), acetic acid at 5.25 g/100mL (aa5g) (▲), 5.1 g/100 mL lactic acid (La5) (Δ), 5 g/100 mL sodium diacetate (sda5g) (*), 5 g/100 mL sodium acetate (sa5g) (•), 3 g/100mL potassium benzoate (pb3g) (□), or 3g/100 mL potassium sorbate (s3g) (◊) (3g) prior to vacuum packaging and storage at 4°C. Colony-forming units were counted on PALCAM agar.

www.ijreat.org

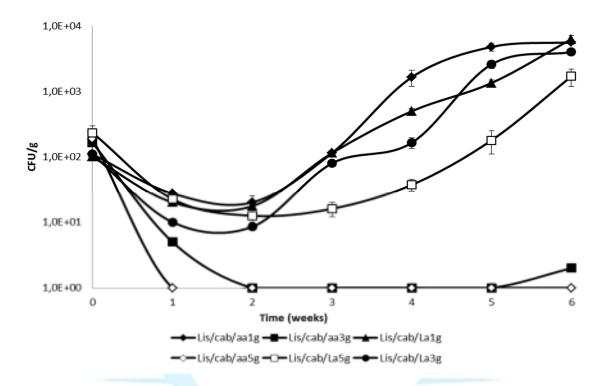


Fig. 2. Survival/growth of inoculated *Listeria monocytogenes* inoculated on raw chicken ham slices treated with lyophilized cell-adsorbed bacteriocin (cab) and either acetic acid at 1.05 g/100 mL (aa1g)(♦) or acetic acid at 3.08 g/100 mL (aa3g) (■) or acetic acid at 5.25 g/100 mL (aa5g) (◊) or lactic acid at 1.02 g/100 mL (La1g)(▲) or lactic acid at 3.08/100 mL (La3g)(•) or lactic acid at 5.1 g/100 mL (La5g)(□) prior to vacuum packaging and storage at 4°C. Colony-forming units were counted on PALCAM agar.

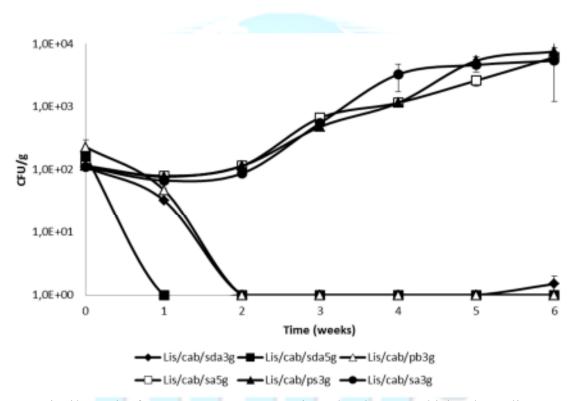


Fig. 3. Survival/growth of *Listeria monocytogenes* inoculated on raw chicken ham slices treated with cell-adsorbed bacteriocin (cab) and either 3 g/100 mL sodium diacetate (sda3g)(\blacklozenge) or 5 g/L sodium diacetate (sda5g)(\blacksquare) or 3 g/100 mL potassium benzoate (pb3g) (Δ) or 5 g/100 mL sodium acetate (sa5g) (\square) or 3g/mL potassium sorbate (ps3g) (\blacktriangle) 3 g/100 mL sodium acetate (\blacklozenge) (sa3g) prior to vacuum packaging and storage at 4°C.